Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Thrombolysis ; 50(3): 604-607, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32514763

RESUMO

Corona virus outbreak started in December 2019, and the disease has been defined by the World Health Organization as a public health emergency. Coronavirus is a source of deep venous thrombosis (DVT) due to complications such as over-coagulation, blood stasis, and endothelial damage. In this study, we report a 26-year-old pregnant woman with coronavirus who was hospitalized with a right ovarian vein thrombosis at Besat Hospital in Sanandaj. Risk classification for deep vein thrombosis (DVT) disease is of crucial importance for the forecast of coronavirus.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Ovário/irrigação sanguínea , Pneumonia Viral/virologia , Complicações Infecciosas na Gravidez/virologia , Trombose Venosa/virologia , Adulto , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/complicações , Infecções por Coronavirus/diagnóstico , Feminino , Interações Hospedeiro-Patógeno , Humanos , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/complicações , Pneumonia Viral/diagnóstico , Gravidez , Complicações Infecciosas na Gravidez/sangue , Complicações Infecciosas na Gravidez/diagnóstico , Fatores de Risco , SARS-CoV-2 , Trombose Venosa/sangue , Trombose Venosa/diagnóstico por imagem
2.
Neuromodulation ; 23(1): 82-95, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31215718

RESUMO

INTRODUCTION: The electrically evoked compound action potential (ECAP) is a measure of the response from a population of fibers to an electrical stimulus. ECAPs can be assessed during spinal cord stimulation (SCS) to elucidate the relationship between stimulation, electrophysiological response, and neuromodulation. This has consequences for the design and programming of SCS devices. METHODS: Sheep were implanted with linear epidural SCS leads. After a stimulating pulse, electrodes recorded ECAPs sequentially as they propagated orthodromically or antidromically. After filtering, amplification, and signal processing, ECAP amplitude and dispersion (width) was measured, and conduction velocity was calculated. Similar clinical data was also collected. A single-neuron computer model that simulated large-diameter sensory axons was used to explore and explain the observations. RESULTS: ECAPs, both animal and human, have a triphasic structure, with P1, N1, and P2 peaks. Conduction velocity in sheep was 109 ms-1 , which indicates that the underlying neural population includes fibers of up to 20 µm in diameter. For travel in both directions, propagation distance was associated with decrease in amplitude and increase in dispersion. Importantly, characteristics of these changes shifted abruptly at various positions along the cord. DISCUSSION: ECAP dispersion increases with propagation distance due to the contribution of slow-conducting small-diameter fibers as the signal propagates away from the source. An analysis of the discontinuities in ECAP dispersion changes with propagation revealed that these are due to the termination of smaller-diameter, slower-conducting fibers at corresponding segmental levels. The implications regarding SCS lead placement, toward the goal of maximizing clinical benefit while minimizing side-effects, are discussed. CONFLICT OF INTEREST: John Parker is the founder and CEO of Saluda Medical and holds stock options. Milan Obradovic, Nastaran Hesam Shariati, Dean M. Karantonis, Peter Single, James Laird-Wah, Robert Gorman and Mark Bickerstaff are employees of Saluda Medical with stock options. At the time the data was collected for the study, Prof. Cousins was a paid consultant for Saluda Medical. John Parker, Milan Obradovic, Dean Karantonis, James Laird-Wah, Robert Gorman and Peter Single are co-inventors in one or more patents related to the topics discussed in this work.


Assuntos
Potenciais de Ação/fisiologia , Corno Dorsal da Medula Espinal/anatomia & histologia , Corno Dorsal da Medula Espinal/fisiologia , Animais , Ovinos , Medula Espinal/anatomia & histologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Corno Dorsal da Medula Espinal/citologia
3.
PLoS One ; 7(4): e34466, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496811

RESUMO

Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical counterparts. Successful models have been developed for a number of these properties but in one case, direction selectivity, there is no consensus about underlying mechanisms. We here define a model that accounts for many of the empirical observations concerning direction selectivity. The model describes a single column of cat primary visual cortex and comprises a series of processing stages. Each neuron in the first cortical stage receives input from a small number of on-centre and off-centre relay cells in the lateral geniculate nucleus. Consistent with recent physiological evidence, the off-centre inputs to cortex precede the on-centre inputs by a small (∼4 ms) interval, and it is this difference that confers direction selectivity on model neurons. We show that the resulting model successfully matches the following empirical data: the proportion of cells that are direction selective; tilted spatiotemporal receptive fields; phase advance in the response to a stationary contrast-reversing grating stepped across the receptive field. The model also accounts for several other fundamental properties. Receptive fields have elongated subregions, orientation selectivity is strong, and the distribution of orientation tuning bandwidth across neurons is similar to that seen in the laboratory. Finally, neurons in the first stage have properties corresponding to simple cells, and more complex-like cells emerge in later stages. The results therefore show that a simple feed-forward model can account for a number of the fundamental properties of primary visual cortex.


Assuntos
Corpos Geniculados/fisiologia , Modelos Neurológicos , Modelos Estatísticos , Neurônios/fisiologia , Orientação/fisiologia , Córtex Visual/fisiologia , Animais , Gatos , Vias Visuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...